



What turbulent processes in the lower atmosphere are observed over a irrigated and no irrigated surface during the LIAISE campaign?

G. Canut <sup>1</sup> , M. Lothon <sup>2</sup> , L.Joly <sup>3</sup> , A. Boone <sup>1</sup> , J. Couzinier <sup>1</sup> , J.C Etienne <sup>1</sup> , E. Moulin <sup>1</sup> , T. Lunel <sup>1</sup> , A. Philibert <sup>2</sup> and A. Roy <sup>1</sup> <sup>1</sup>CNRM, Météo-France UMR 3589 CNRS, Toulouse, France <sup>2</sup>LAERO, Univ. of Toulouse, CNRS, UPS, Toulouse, France <sup>3</sup>GSMA, Université de REIMS, CNRS, France

Thanks to the P2OA team, to the CNRM/GMEI team, and to Salomé Avrillaud (ENM student 2022) and Emmeline Francois (master's student 2023)



#### LIAISE project



# LIAISE = Land surface Interactions with the Atmosphere over the Iberian Semi-arid Environment

A. Boone<sup>1</sup>, M. Best<sup>8</sup>, J. Cuxart<sup>7</sup>, J. Polcher<sup>2</sup>, P. Quintana-Segui<sup>4</sup>, J. Bellevert<sup>3</sup>, J. Brooke<sup>6</sup>, G. Canut-Rocafort<sup>1</sup>, J. Price<sup>6</sup>, O. Hartogensis<sup>7</sup>, J. R. Miro<sup>8</sup>, P. LeMoigne<sup>1</sup>

- 1 CNRM Météo-France/CNRS, Toulouse, France
- 2 LMD, IPSL, Paris, France
- 3 IRTA, Lleida, Spain
- 4 Observatori de l'Ebre, Roquetes, Spain

- 5 UIB, Balearic Islands, Spain
- 6 UKMO, Exeter, UK
- 7 U. Wageningen, Netherlands
- 8 SMC, Barcelona

GEWEX

project: 2020-

2024

















































de les Illes Balears



















# Focus on the LIAISE fiel campaign

# Heterogeneity of land cover









## Focus on the LIAISE fiel campaign



LIAISE = Land surface Interactions with the Atmosphere over the Iberian Semi-arid

Environment

One of the objectives: Study of the influence of surface heterogeneity artificially created by irrigation on the atmospheric boundary layer

→ Field campaign





#### Focus on the LIAISE fiel campaign



LIAISE = Land surface Interactions with the Atmosphere over the Iberian Semi-arid **Environment** 



#### . 2 super sites:

- La Cendrosa (BL1) : humid zone (agricole irriguée)
- Els Plans (BL2): natural and semi-arid zone





#### **Outlines**



- Overview of strong heterogeneities
  - 1- at the surface from 50 m tower
  - 2- within the ABL from UHF wind profiler
  - 3- within the ABL from aircraft and tethered balloon
- Some details on the mast and thetered ballon measurements
- Surface energy balance on the lake
- Study with mesonh numerical models





LC = La Cendrosa EP = Els Plans

Radiative fluxes (W/m²)

# La Cendrosa | L

Similar Swd, no clouds

#### Wind direction



#### Wind direction



- Change during the night
  - North-Est at La Cendrosa
  - South at Els Plans

#### Wind direction



2nd period:

-more direction during the day

-south west from 13UTC: La

MARINADA

Marinada = inflow of sea air from the eastern Mediterranean coast

- Latent and sensible heat fluxes
  - intensification of LE in La Cendrosa from 20 july
     LE almost zero at Els Plans



# Overview of strong heterogeneities: UHF wind profilers Plans



UHF LOW MODE, Flight 2: 20210716, moyenne sur 2min



# Overview of strong heterogeneities: UHF wind profilers Plans



#### arrival of la marinada, easterly wind, later at



## Overview of strong heterogeneities: ABL exploration

During the SOP, 8 flights with the french aircraft ATR42

- (15, 16, 17, 20, 21, 22, 27 and 28 july 2021)
- 80 horizontal stacked legs at midday



Fluctuations of  $u',v',w',\theta',r'$  @ 25hz







# Overview of strong heterogeneities : ABL exploration

Zi EP ~ [750 m,; 2000 m] Zi LC ~ [300 m; 1000 m] LC = La Cendrosa EP = Els Plans

Turbulent kinetic energy



TKE normalisee du 20/07/21 au 28/07/21 Second period



Zi EP ~ [750 m,; 2000 m] Zi LC ~ [300 m; 1000 m] LC = La Cendrosa EP = Els Plans

# Overview of strong heterogeneities: ABL exploration

wT normalise du 15/07/21 au 17/07/21

wT normalise du 20/07/21 au 28/07/21



#### More details on the measurements: 50 m tower at La cendrosa

Footprint (Kljun 2014, 2D) (july when net radiation>20W/m2)





#### More details on the measurements: 50 m tower at La cendrosa

Footprint (Kljun 2014, 2D) (jully when net radiation>20W/m2)



Be careful, footprint at west of the alpha alpha field







#### More details on the measurements: tetherballoon

- To better understand what is happening as a turbulent exchange in the boundary layer, use of aircraft measurement and surface station.
- The tethered ballon fills the area between the two
- Since 2010, a turbulence probe with sonic and motion sensor
- Since 2020, sonic and motion sensor and FAMOUS (Fast humidity sensor in collaboration with GSMA of Reims (france))

Famous project, LIAISE first campaign
A favorable context to measure humidity exchange







#### More details on the measurements: tetherballoon

Validation of humidity fluctuation at 20 hertz
 Famous vs licor 7500 @50m



#### More details on the measurements: mesure on a small boat

Within the irrigated area, in the middle of Ivars Lake, only a few kilometres from the La Cendrosa a mobile platform was deployed from may to octobre 2021 to measure SEB





#### More details on the measurements: from the boat











A similar total evapotranspiration is observed above the lake and at la-cendrosa on the alphaalpha culture. We observe after the harvest a decreasing of the evapotranspiration. At the end of july the culture reaches 60cm and the evapotranspiration becomes superior to the lake again. In the diurnal cyle we observe a contrast behavior between the both site. Druring the night, the evapotranspiration stay high on the lake and the diunal cycle is less marked.



# Study with mesonh numerical models

#### WG2: Atmosphere

#### **GMME (CNRM)**, phd student Tanguy lunel



# Study with mesonh numerical models

#### Cross section on 20210722-1200-irr-verti\_proj



Three LIAISE working groups were created after the November 2021 field campaign. The aim of these groups is to provide a forum for exchanging information on the progress of research within LIAISE.

#### WG 1: surface

- Bilans de l'eau, de l'énergie et du carbone
- processus dans l'interaction entre la surface et l'atmosphère (l'ET étant un processus clé qui intègre les trois bilans)

#### WG 2: atmosphere

- Verticale: ABL processes
- Horizontale: Mesoscale circulations related to wet-dry, topography, sea breeze interaction
- Feu

#### WG 3: Hydrology

- Irrigation & streamflow/discharge
- Reservoirs (and their regulation)
- Regional scale estimates of surface properties related to soil water

## **Perspectives & Conclusions**



- Need to continue work with all this dataset
- most of the data is available on the aeris database
- good quality data from the humidity sensor under the tethered ballon
- LIAISE field campaign: a good dataset to improve the knowledge of the vertical profile of the turbulence in a irrigated surface
- Dataset similar between the two contrasted sites els plans to identify
  - difference behaviour,
  - instrumental synergy: wind profiler, SEB station, RS, Aircraft
  - horizontal circulation & Internal boundary layer









**Availibilty data**: 8june-10 october

Leosphere (Vaisala company) Wincube7, 4 lasers

3 wind components: W, U, V

Temporal resolution: 1s and 10 minutes processing

Vertical resolution: 20 m

Alt min: 40m Alt max: 240m

Research mode with data available every second → estimation of **variance and TKE** 









Availibilty data: 8june-10 octobre

Leosphere (Vaisala company) Wincube7, 4 lasers

3 wind components: W, U, V

**Temporal resolution: 1s and 10 minutes processing** 

Vertical resolution: 20 m

Alt min: 40m Alt max: 240m

Research mode with data available every second → estimation of **variance and TKE** 

→ Mean data : good agreement between sonic anemometer and wind from lidar







#### 17/07/2021 10 minutes wind speed and direction







- A fine description of the low layer
- ideal for identifying wind shifts
- A complement to the UHF wind profiler









#### Why to know TKE in the low layer?

- It is one of the most important variables used to study turbulent boundary layers since it quantifies the intensity of turbulence which controls vertical mixing
- Pronostic equation on various models (AROME or meso-NH models from Météo-France) for turbulence

#### TKE calculated every 30 minutes with 1s data for july



→ Similar behaviour but differences in daytime amplitude







#### Why to know TKE in the low layer?

• It is one of the most important variables used to study turbulent boundary layers since it quantifies the intensity of turbulence which controls vertical mixing

3.5

• Pronostic equation on various models (AROME or meso-NH models from Météo-France) for turbulence



1.5

2.0

lidar 40m windspeed (m/s)

2.5

3.0

- underestimation by lidar
- needs to be further investigated

METEO FRANCE

#### 3-Tethered ballon

Validation of heat fluxes

#### Famous vs licor 7500 @50m













#### 3- Tethered ballon



Overview of the variance of humidity at differents levels



Page 34

#### 3- Tethered ballon



Overview of the heat fluxes at differents levels



# **Perspectives & Conclusions**



Need to continue work on lidar tke





